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THE BIFURCATION AND STABILITY OF PERMANENT ROTATIONS 
OF A HEAVY TRIAXIAL ELLIPSOID ON A SMOOTH PLANE* 

A.V. KARAPETYAN and V.N. RUBANOVSKII 

Stationary motions of a heavy triaxial ellipsoid on a smooth horizontal 

plane are investigated. Permanent rotations of the ellipsoid are 

determined as well as the conditions for their existence, branching and 
stability. Certain special features of the problem in question are noted, 

namely the loss of secular stability of the rapid rotation of the ellipsoid 

when its centre of mass is at its lowest, the increase in dimensionality 
of the manifold of permanent rotations of the ellipsoid in the problem 

when the necessary conditions for the existence of the additional integral 

hold in this case, etc. Earlier results obtained by the authors con- 

cerning the stability of regular precessions of a top on a horizontal 

plane with friction, are made more precise. 

1. Consider a heavy rigid body on a small horizontal plane assuming, without loss of 

generality, that the projection of the centre of mass of the body on the supporting plane, 

is stationary. We shall assume that the body is bounded by an ellipsoidal surface whose 

principal axes coincide with the principal axes of the central ellipsoid of inertia. 

The equations of motion of the body admit of the first integrals 

U = mza2 + J,o,~ + J,o,~ + J+o,~ + 2mgz = Const 

U, = J,o,y, + J,o,y, + J,w,y, = k = const 

u, = VI2 + y22 + Ya2 = 1, z2 = ~,~y,~ + a,2y,2 + a,2y,2 

(I.11 
(1.2) 

(1.3) 

Here z is the height of the centre of mass above the supporting plane, @r,Oe, oQ and 

yl,Ya,Ys are the components of the angular velocity vector of the body and the unit vector 

of the ascending vertical in the principal central axes of inertia of the body, m is its mass, 

Jl, Jt, J, and a,, a2, a, are the principal central moments of inertia of the ellipsoid and the 

semi-axes of its surface, and g is the acceleration due to gravity. Confining ourselves to 

investigating the triaxial ellipsoids with triaxial ellipsoids of inertia we will assume, 

without loss of generality, that J,<J,<J,. 
According to Routh's theorem the stationary motions of the system in question have the 

corresponding stationary values of the energy integral (1.1) when the values of the area (1.2) 

and geometrical (1.3) integrals are constant. Ne recuce the problem of determining these 

motions to the problem of determining the stationary values of the function 

ZW=U-22h(U,-k)+a(U,-1) 

where h and e are the undetermined Lagrange multipliers. 

The function W depending on the variables 01, % o,, y,,y,,y,,h,s and parameter k, is an 

analogue of the modified potential energy /l/. 
The conditions of stationarity of the function W lead to the equations 

(1.4) 

(1.5) 

Here and henceforth the symbol (123) will indicate that the relations omitted are 

obtained by circular permutation of the indices 1, 2, 3. 

Depending on the relations.between the semi-axes of the surface of the body, the last 

equations admit of between three and six one-parameter families of solutions (apart from the 
signs of ylr yz,y3) of the form 
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i = 0, 01 = ay,, y1 = yl (A) (123); o = u (h), k = k (A), h = const 

corresponding to the uniform rotations of the body about the vertical passing through the 
fixed centre of mass of the body. 

2. Let a,<U,<U~. ThenEqs.(1.4) and (1.5) willhave sixone-parameter familiesof solutions 
(the relation z'=O, common to all these solutions is omitted) 

or= hy,, 02 = Os=O, yr* = 1, y*=y3=o (2.1) 

CT = J,h2 - mgal, k = J,h (123) 

WI = 0, ($7 = ay,, w3 =hy,, y1 =o cm 

The solutions (2.11 and (2.2) describe the uniform rotations of the body with angular 
velocity h about the corxesponding principal central axes of inertia and the axes lying in 
the principal planes of the central ellipsoid of inertia. V?e note that solutions (2.1) exist 
for any value of the angular velocity h, and solutions (2.2) for 

a,,2 <a* G aIs2 (1); azss > aa 2 a,,* (2); .as12 Q a2 G as22 (3) (2.3) 

respectively. 
The solutions (2.1) and (2.2) can be represented geometrically in a nine-dimensional 

space (or, wp, o,,y~,y~,y,,k~,k) by the points of a one-dimensional curve whose six branches 
p,, p,, p, and Qr,Qs, Qs are determined, respectively, by Eqs.(Z.ll and (2.2). 

The branches PI, P, and p, determined by relations (2.1) correspond to the uniform 
rotations of the body about the principal axes of inertia and represent, in the subspace 
(a. o, 4, the parabolas &,pz, ps with a common axis of symmetry situated, respectively, in 
the plane sz (k = J&h 3ta (k = J,h), ng (k = J,h). The positions of equilibrium of the body 
correspond to the spaces of the parabolas. 

The branches QI*Qz and Qs,determined from relations (2.2) correspond to the uniform 
rotations of the body about axes lying in the principal planes of inertia and represent, in 
the subspace &,a, k), the segments of the curves qlrqr,qs, situated between the planes n, and 
sa, % , and xl, sr and nr respectively; the ends of these segments lie, respectively, on the 
parabolas PZ and PsyPar and pl,pl and pz. 

a 

7/ b 

Fig.1 
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The branches P,,I',. P, correspond, in the subspace (yr,yZt y3), to the points y12== 1, 
y*2=1.y*2=1 of intersection of the unit sphere (1.3) with the coordinate axes, and the 
branches Ql,Q2, Q3 correspond to the large circles passing through the points Y?'= 4 and 
ya2= 1, 1y82= 1, and l>r2= 1, yr* = 1 and yS2=1 respectively. 

The approximate form of the branches P,. P,, f’, and Q,! Q2, Q3 is shown in Fig.1 (a 
in the subspace @,a, k) for A > 0, k > 0, b in the subspace 
v3>0 c in the plane (A, k) for h >O k>O). 

(vl, yz, y3) for yI> 0, y2 3;- 0, 

3. We will use Routh's theorem and its inversion to investigate the stability of 
permanent rotations of the body relative to @I.%~ 03 and YI> Y2, Y3- We will denote the 
variations of the variables ~~,w,, wQ and yl, Y?, s3 by E,> E2r Es and 11~. *b, qa respectively. 
Then the second variation 6'w of the function W will take the following form for the 
solutions (2.1), under the conditions that 6U, =siYI=o: 

6VV = mz’2 + J, (sj, -. hq2)’ + J, (& - hqJ2 + [(.J1 -- (3.1) 

52) h2 + mga,-” (a,2 - a,‘)] qr? -/. [(d, - JB) h* + 

naga,-’ (a,’ - a12)1 qs2 (123) 

From this it follows that the rotations of the body about the x1 axis, corresponding to 
the smallest moment of inertia J, are stable (the degree of instability x=0), if O<A2< 
h,,2, unstable (x = 1). if h,?" <,i.? < hzz2, and the degree of instabiLity for them will be 
x = 2. when h2 > A,,". 

The rotations bf the body about the xQ axis corresponding to the middle moment of inertia 
J* are unstable (x= 1) if 0<Ph2<hgle or h? > h,,?, and stable (x=0) when h,,'< h2 < h,,2. 

The rotations of the body about the x 3 axis corresponding to the largest moment of 
inertia Ja, have the degree of instability x=2 when 0.<h’<h,,“, are unstable (x= 1) 
when A,," < hZ <A,;, and stable (x=0), when t > iLIz*. 

The values >,' = hiIs (i, j = 1. 2, 3;i+j) correspond to the bifurcation points. Thebranches 

I',. P,, I', produce, at these points, the branches Q1,Qzr Q3, corresponding to the permenant 
rotations (2.2). 

In the case of the solutions (2.2) the second variation of the function W, under the 
conditions &U,=6U,=O, takes the form 

The analysis of the functions kj(h) (from now on we have 
lo. dk,ldh<O for all I from the corresponding interval 

81< 4s, (1 + SEi)_l 

and also for h'< hiz, if 
4Ei (1 +- 3&i)+ < 6i < (3 _t &j)/4 

2O. dk,!& > 0 for all h, if 

6i > (3 + e&4 

and also for h2>hi2, if 6, and EC satisfy the relation (3.4). 
Here we have 

i= 1,2,3 everywhere) yields: 
of (2.3), provided that 

(XI0 

(3.4) 

(3.5) 

Let x>O. Then the rotations of the body about axes perpendicular to the 21 axis are 
stable (x=0) under the condition (3.3), i= 1, and also under the condition (3.4) i= 1, 
if h2<hlz, and unstable (x= 1) under the condition (3.5) i=l, and also under the con- 
dition (3.4) i=l, if h$ > hr2. 

The rotations of thebody about axes perpendicular to the x2 axis are unstable fx=f) 
the condition (3.3) i-2, and also under the condition (3.4) i= 2. if h2<ha2 and their 
deqree of instability is x=2 under the condition (3.5) i=2 and also under the condition 
(3.4) i = 2, if L2>hlZ. 

The rotations of the body about axes perpendicular to the x3 axis are stable (x=0) 
under the condition (3.3) i=3, and also under the condition (3.4) i =3, if j1'<hs2, and 
unstable (x= 1) under the condition (3.5) i=3, and also under the condition (3.4) i = 3, 
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if h2 > hSZ. 

When conditions (3.4) hold, the points of bifurcation correspond to the values J.2 = his. 

At these points the branches Qi touch the planes k=ki and are situated on one side of these 

planes, and 

If x<o, then the degree of instability of the rotations of the body about axes 

perpendicular to the axes of the smallest and largest (mean) moment of inertia increases 

(decreases) by one; the case of x=0 needs a special treatment and will be discussed below. 

a b C 

Fig.2 Fig.3 

Fig.la shows a curve of permanent rotations of the body and the distribution of the 

degree of instability on its branches for k>O in the case when x>O and all conditions 

of (3.3) hold. 

Il'ote. The branches Pi of the rotations ofthebody about the principal axes of inertia 

exist for any relations connecting the semi-axes of the surface of the body, while when 

=,<~,<a~ does not hold, then some or all branches Qi of the rotations of the body about the 

axes lying in its principal planes of inertia vanish (become imaginary). At the same time 

the number of bifurcation points on the branches Pi decreases and the nature of the stability 

of the separate segments of these branches, changes. 

Thus when a,<=,<=, and x>O), the branch Q3 vanishes, while when al<a,<a,(x<O), 

then the branch Q1 vanishes; when % < a3 < a1 (x > O), the branches Q2 and Q3 vanish and when 

a3 < a1 < a, (x < O), then the branches QI and QS vanish. Finally, when a~<.,%< ~1, 

which holds a priori for a homogeneous ellipsoid (we recall that I,<I,<J8 by 

definition), all branches Qi vanish. 

Fig.2 (we use the notation Fig.1) shows the projections of the curves of permanent 

rotations of the body on the plane (k,h) and the distribution of the degree of instability on 

its branches for k>O in the cases a) a,<al<at, b) =,<=,<a~, c) a,<a*<a, respectively (when 

conditions (3.3) are satisfied). 

We note thatthe permanent rotations of the body whose degree of instability is equal to 

two, can be Lyapunov stable (we also have a gyroscopic stabilization, which however breaks 

down under the action of forces with dissipation, total with respect tothevelocities of 

position coordinates). A rigorous investigation of the stability of such rotations requires 

the application of the Kolmogorov-Arnol'd-Moser methods (note that the Routh-reduced system 

has two degrees of freedom in the present problem), and is not discussed here. 

4. Let us now deal with the case x=0. First we note that this case is possible only 

when a,< a,< as, and the expressions 

are invariant for this case under cyclic permutation of the indices 1, 2, 3 (we shall denote 

them by J and p respectively; clearly, P>O and J + pza = J,y,' $- J,y,' i- J,yaz> 0). Here 

the Eqs.(l.Q), (1.5) admit of all six one-parameter families of solutions (2.1), (2.2) and 
also a two-parameter family 

o1 = a~, (123)~ ~~2 + ~2 + ~2 = I, ~,w + a2 + (4.1) 
aS2yaZ = 9, z = mg/(pLh2), c = Jh2, k = Jh + m2gel(ph3) 

(the free parameters are e.g. h and va). 

The solutions (4.1) describe uniform rotations of the body about an arbitrarily positioned 
vertical axis, and exist when a,<z<aa,, i.e. when 
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The solutions (4.1) can be represented in the space (w,,w,,w,,y,,y,,y,,h,cr,k) in the form 
of a two-dimensional surface S stretched over the branches Qi" into which'the branches Qi 
are transformed when x=0. 

In the subspace @,(I, k) and surface S and the branches Qi" merge to form a single 
multiple curve situated between the planes n, and nQ and intersecting the plane nz (r'ig.3a 
shows its projection (L)=(L,) l_j (L,) on the (k,h)) plane, while in the subspace pi the 

branches Qi" do not coincide and have, as before, the form shown in Fig.lb. 

Fig.3b shows the form of the surface S in the positive octant of this sub&pace. We note 
that the surface can be split into two parts, S,,(a,*<:za :.<e,") and S,, (al" s< z2 < ai"), and 
their common boundary (the separatrix) will be given by the system of equations 

Yi2 + &2 _!_ v3z = .I* a,21;,2 $- a,2y,2 + a32y3% = aBs 

while its point of intersection with the branch 0%" will also divide the latter into two parts, 

Q12” (i\.’ < &‘) and QzSo (AZ > he2), with Aa2 = mgl(pa,). In the region S,, the permanent rotations 

(4.1) are generated from the permanent rotations about the axes perpendicular to the .rl axis 

(Q1"h and pass continuously to "slow" permanent rotations about axes perpendicular to the 

12 axis (Q120), and in the region S,, the permanent rotations (4.1) are generated by the 

"rapid" (h2,>h*f) permanent rotations about the axes perpendicular to the ;c, axis (Q230), and 

pass continuously to the permanent rotations about axes perpendicular to the xa axis tQs"h 
so that (see 'i'ig.3a) (A,) = (Q1') = (Q1%") = (S,,)? (&) = (QzO) = (Q2P) = (S,,). 

The brackets indicate that we consider the projections of the corresponding curves and 

surfaces on one or other subspace (the brackets are omitted from the figures). 

Thus all points of the branches Qi" are bifurcation points (formally, this also follows 

from (3.2), since when x=0, the second variation ofthe function W becomes degenerate in 

the case of permanent rotations (2.2)). Consequently when x=0, neither the permanent 

rotations (2.2) (since they all correspond to the bifurcation points), nor the permanent 

rotations (4.1) (since the dimension of the family of these rotations is greater than the 

number of the arbitrary constant integrals (1.2) and (l-3)), can be stable with respect to al 

variables under any conditions. 

Moreover we note, that when x=O,the function W can be reduced to the form 

H'" = ms'2 -!- .J,Stra i- J,f2,a + J,S2,2 + Bmgz - y;?%z 

52c = wj - hy, (i --= 1, 2, 3) 

Clearly, the function W" depends on the combination of 521 and of z variable @et ~t,and 

the number of these conditions is less than the number of the initial variables. Thus in the 

present case it makes sense to pose a problem of stability of the uniform rotations (2.2) and 

(4.1) relative to the variables SZi,z i.e. with respect to some of the variables. 

Let us denote the variation of the variable z by 5, and retain the previous notation for 

the variables appearing in the function W”. Then the second variation of the function w" 

will, under the conditions that 6U,=SU,=O, take the following form forthesolutions (2.2) 

and (4.1): 

S%‘* = mz*’ + JiS’2,a + J&2 -+ J3fZy2 - * g 5% 

where, as we already said, ~L>O and J + pz2>0, and the function k (V is given by the 

last relation of (4.1). 
The analysis of the function k(X) shows that dk/dh<O on all branches Qi" and the 

whole of the surface S, provided that J<3pU,' on the whole branch Qlo,on the part Qrn" of 

the branch Qz", and on the part S,, of the surface S, and also under the condition that 

h2< 3mglJ, on the branch Qa',on the part Qrrso of the branch QaO and on the part Szs of the 

surface S, provided that 3pa,2< J<3~a,~, and finally, under the condition that h* < 3mglJ,lon the 

branch Q,", onthepart Qnd ofthebranch Qzo andonthepart S,, of the surface S, provided that 

3pasa < J < 3pazZ (otherwise dk/dh>O). 

Thus the permanent rotations of the body about the axes whose direction cosines belong 

to the region S,, LJ Q1” i_j QJao of the unit sphere (1.31 are always stable if J<3pat2, and 
also if ha < 3mglJ, when 3puzZ <J < 3pa,%. The permanent rotations of the body about the 

axes whose direction cosines belong to the region S,, U Qz3" u Q," are always stable when 

J < 3ps,", and also if hZ< 3mglJ when 3palP < J< 3,uaz"e 

Finally we note that when ?t=o, then every pair of bifurcation points on the branches 

P,,P,,P, merges into one double point. The uniform rotations of the body about the axis of 

the smallest (largest) moment of inertia are either stable if h2< mg/p, (h2>mg/(l%)), Or 
their degree of instability is equal to two if h'>mg/(& (~'<mg/(l".%)), and the uniform 
rotations of the body about the axis of the middle moment of inertia are nearly alwaysunstable 
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(x= 1 when ha # mg/(pa,)). 
Fig.3a shows the projection of the manifold of permanent rotations of the body on the 

(k,li) plane and the distribution ofthedegrees of instability on its branches for k>U 
(under the condition that J<3pa12). 

we note that the permanent rotations (2.2) and (4.1) for which dkldh> 0, can also be 

Lyapunov stable (with respect to some of the variables). 

6. Let us note some special features of the problem in question. Firstly, the triaxial 

ellipsoid on a smooth plane may behave in the same way as a "tippy-top" (e.g. when J,<J,<J,, 

a,<%<%). If we place such an ellipsoid so that its centre of mass is at its lowest position 

and spin it rapidly about the vertical, then ellipsoid will roll over into a positioninwhich 

its centre of mass will be at its highest, and will rotate about the vertical with an angular 

velocity less than the initial velocity (Fig.la,c). We note that such behaviour of a triaxial 

ellipsoid can be explained, unlike the case of the roll-over of a top (a symmetric body), 

without taking into account the sliding friction. 

Secondly, if the parameters of the ellipsoid satisfy the condition x= 0, then the 
dimension of the manifold of its stationary motions will be greater than the number of known 

integrals of the problem in question, different from the energy integral and the trivial 

integral. It is interesting to note that the condition x=0 is identical with the necessary 

condition for the existence of the additional integral in this problem /3/. 

Finally, when x= 0, the degree of instability of permanent rotations of the body about 

the principal axes of inertia changes, during the passage through the bifurcation points, by 

an even number (Fig.3a). Such a change in stability is caused by the fact that the points 

are multiple. Every one of these points is obtained by merging together a pair of bifurcation 

points, simple when x#O (when x= 0, both Poincark stability coefficients vanish simultane- 

ously at the bifurcation points). 

7. A multiplying factor dkldh, where k is given by relation (2.7') of /4/, was omitted 

I 
in the conditions of stability (instability) (3.5), ((3.6)) 

‘le I of angular precession of a top in /4/. The exact condition 

i 
1 

of stability (instability) has the form (Jl-JJ dk/dh>O(<O). 

When J,> J,, the factor dkhh is greater than zero and 

s+\/z 
7 

1 0, 

P+ 1 
I\ +1-C 

] 6-1 

L7 LLL 

the regular precession of a top is always stable. If, on 

the other hand, J,<Js, then dkld?. can take positive values 
(and the precessions will be unstable), as well as negative 

1 ‘\\ 

values (in which case the precessions will be stable). 

We can separate the following three regions (Fig.4) in 

I I 
the parameter plane e= alp.6 =J,/J, of the problem (we use 

0, \ 

7-G' ---r_-' 
; 6-p 

the notation of /4/): region D, (bounded by the rays 
E = 0, 6 > 1 and 6 = l/z, 

h ' 
/ 

S> (3-l-1/%)/7 and the curve P,), in 

whichwehave at most a single regular precession for any 

r/z 3/q 1 .s 
fixed value k in the integral (2.2) /4/, and the precession 

is always stable; region D_ (bounded by the straight line 

segment E = 0,Sir<6<i and the curve I_), in which we also 
Fig.4 have at most a single regular precession for any value of k 

and the precession is always unstable; region D, (bounded 
by the straight line segments e= 0,1/r<6<31r and 6 ='la,O<~<(3+ l/%/7 and curves I+ and P_), 
in which two regular precessions can exist, one of which will be "slow" ?.'<h,') and stable, 
and the other "rapid"'h2>?.,a) and unstable. Here A, is a real root of the equation dkidh=O 
(I.,4 = 3magaa2 [JIJs (1 - ez) - J,a]-‘), and the curves I+ and P-are given, respectively, by the equations 

r+ : 468 - 6 (1 - e) (7 + e) + 3 (1 - &)* = oj 
r_ : 462 - 6 (i + &) (7 - e) + 3 (i + e)2 = 0 

We note that the diagrams a-d shown in the figure in /4/ correspond to values of the 
parameters lying, respectively, in the region D_ to the left of the straight line 6 = 1 - e(a); 
in the region D- to the right of the straight line 6=1--e (b); in the region D, to the right 
of the straight line 6=1 and totheleft of the straight line 6=1+ e (c); and in the 
region D+ to the right of the straight line 6=1+ e(d). For the parameters lying in the 
region D+ to the left of the stright line 6=i, the diagram is analogous to that shown in 
figure b of /4/, except that the whole curvilinear branch must have a plus sign. For the 
parameters lying in the region D, above (below) the straight line 6= 1-e, the diagram is 
analogous to that shown in the figure b(a) of /4/, except that the part of the curvilinear 
branch of this diagram adjacent, when h2<?$, to the straight line ys=+l, must also have a 
plus sign. 
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The problem of the effects of higher-order moments of inertia on the 

0021~8928/87 $~O.OO+O.OG 

01988 Pergamon Press plc 

motion of a solid, fixed at the centre of mass and having a spherical 

central ellipsoid of inertia in a central Newtonian field of force is 

investigated. Uniform bodies of the simplest geometrical shapes (a cube, 

cone and cylinder) are considered. In view of the difference in the 

symmetries of these bodies the nature of their motions will be different. 

The equations of motion of a cone and a cylinder are integrated in terms 

of ultra-elliptic and hyperelliptic functions respectively. Sets of 

positions of equilibrium, permanent rotations, and regular precessions 

are indicated, and their branching and stability are investigated. Unlike 

the case when only second-order moments of inertia are taken into account, 

two features are determined here: 1) tow families of inclined positions 

with respect to equilibrium exist, and 2) for a body in the form of a 

cone the direct position of relative equilibrium is unstable if the vertex 

of the cone is situated between an attracting centre and a fixed point, 

and is stable otherwise, which has no analogue for permanent rotations of 

a body with a triaxial central ellipsoid of inertia. 

1. suppose Oh5 is a fixed system of coordinates with origin at the centre of mass of 

a body at a distance R from an attracting centre and an axis 6 directed along a rising local 

vertical, and 0x1x2x, is a. system of coordinates rigidly coupled to the body. The mutual 

orientation of the E, 9, 5 and Xl, X2, X3 axes is specified by a matrix of direction cosines. 

We will denote the unit vectors of the E,q, 5 axes by cz.fi,y, and their projections on to 

the X1, X2. XS axes by CC~, pi, vi (i = 1,2,3) 
The coordinates X1,X2.X3 of a point of the body will be written in dimensionless form 

by relating them to a characteristic linear dimension a of the body (a is the side of the 

cube or the radius of the base for a cone and a cylinder). 
The force function U of the forces of Newtonian traction has the form (~1 is the 

gravitational constant and p is the density of the body) 

A = R [$ (5% + q2) + (1 + &~)‘l”t = R [I + 2e (%YI + 
x2y2 + x,y,) + E2 (xl2 + xa2 -I- “s~)]“~ (E = a/R < I) 

f (E) = 11 -t 285 + ea (ES + $ -t 5”)W 

It can be seen that U is independent ofaiand pi, and hence equilibrium is preserved as 

the body rotates about the 5 axis. 
We will calculate CJ up to fourth-order terms in E using the expansion 
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